Agricultural green and blue water consumption and its influence on the global water system

نویسندگان

  • Stefanie Rost
  • Dieter Gerten
  • Alberte Bondeau
  • Wolfgang Lucht
  • Janine Rohwer
  • Sibyll Schaphoff
چکیده

[1] This study quantifies, spatially explicitly and in a consistent modeling framework (Lund-Potsdam-Jena managed Land), the global consumption of both ‘‘blue’’ water (withdrawn for irrigation from rivers, lakes and aquifers) and ‘‘green’’ water (precipitation) by rainfed and irrigated agriculture and by nonagricultural terrestrial ecosystems. In addition, the individual effects of human-induced land cover change and irrigation were quantified to assess the overall hydrological impact of global agriculture in the past century. The contributions to irrigation of nonrenewable (fossil groundwater) and nonlocal blue water (e.g., from diverted rivers) were derived from the difference between a simulation in which these resources were implicitly considered (IPOT) and a simulation in which they were neglected (ILIM). We found that global cropland consumed >7200 km year 1 of green water in 1971–2000, representing 92% (ILIM) and 85% (IPOT), respectively, of total crop water consumption. Even on irrigated cropland, 35% (ILIM) and 20% (IPOT) of water consumption consisted of green water. An additional 8155 km year 1 of green water was consumed on grazing land; a further 44,700 km year 1 sustained the ecosystems. Blue water consumption predominated only in intensively irrigated regions and was estimated at 636 km year 1 (ILIM) and 1364 km year 1 (IPOT) globally, suggesting that presently almost half of the irrigation water stemmed from nonrenewable and nonlocal sources. Land cover conversion reduced global evapotranspiration by 2.8% and increased discharge by 5.0% (1764 km year ), whereas irrigation increased evapotranspiration by up to 1.9% and decreased discharge by 0.5% at least (IPOT, 1971–2000). The diverse water fluxes displayed considerable interannual and interdecadal variability due to climatic variations and the progressive increase of the global area under cultivation and irrigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The water footprint of humanity.

This study quantifies and maps the water footprint (WF) of humanity at a high spatial resolution. It reports on consumptive use of rainwater (green WF) and ground and surface water (blue WF) and volumes of water polluted (gray WF). Water footprints are estimated per nation from both a production and consumption perspective. International virtual water flows are estimated based on trade in agric...

متن کامل

Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade

The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5 resolution the amount of blue and green water (irrigation and precipitation water) needed to produce one unit of crop yield, for 11 of the world’s major crop t...

متن کامل

Temporal dynamics of blue and green virtual water trade networks

[1] Global food security increasingly relies on the trade of food commodities. Freshwater resources are essential to agricultural production and are thus embodied in the trade of food commodities, referred to as ‘‘virtual water trade.’’ Agricultural production predominantly relies on rainwater (i.e., ‘‘green water’’), though irrigation (i.e., ‘‘blue water’’) does play an important role. These d...

متن کامل

Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work

Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to ...

متن کامل

Characteristics of water consumption in water-saving winter wheat and effects on the utilization of subsequent summer rainfall in the North China Plain

Winter wheat (Triticum aestivum L.) grows in dry season but summer maize (Zea mays L.) coincides with rainfall in the North China Plain (NCP). Increasing rainfall use efficiency and harmonizing its utilization between the two species is an effective way to mitigate impact on groundwater deriving from wheat irrigation. One to four times water supply (W1, to W4) were employed in wheat, three wate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008